

Introduction

Aquaculture has been identified as one of the most viable ways to meet the world's growing demands for steady sources of food and nutrition¹. In 2016, global aquaculture production provided for roughly half of total seafood harvested for human consumption⁹. With 25% of the world's coastline, Canada is currently among the top 10 exporters of seafood products².

The Nova Scotia Department of Fisheries and Aquaculture has recognized a significant opportunity for growth of the aquaculture industry in the province³. In order to ensure sustainable growth which minimizes negative social, environmental, and economic impacts, site selection is a key step in the planning process⁴.

Decision support tools such as modeling and suitability analysis are widely utilized to identify suitable locations for aquaculture development based on available spatial data layers⁵.

Liverpool Bay and Main-a-dieu were chosen as case studies for suitability analysis in Nova Scotia since they have been identified by the province as areas of interest for aquaculture expansion.

Methods

The research objectives were studied through a quantitative approach. Th included document analysis to determine eligible criteria and constraints to development in Nova Scotia, data collection of available data layers representi criteria and constraints, and GIS-based suitability analysis to create suitability m on weighted overlay of the data.

Document Analysis: An extensive review of existing literative undertaken to gather suitability analysis studies with similar ob this research. These included analysis of studies from around the gain a well-rounded understanding of criteria and constraint cons Results were compared to previously existing literature outlining for aquaculture in Nova Scotia.

Data collection: Based on the data list identified through analysis, existing data for Nova Scotia were compiled. Data wer through the Nova Scotia Open Data Portal, Government of Car Data Portal, Nova Scotia Geographic Data Directory, Fisheries ar Canada, and contacts in the Nova Scotia Department of Fish Aquaculture, Nova Scotia Environment, and the Centre for Mari Research. Data formats included shapefiles, geotiff images, and

Data Formatting: In order to be included in the suitability ana were converted into raster format. CSV data were converted into using the XY Table to Point tool in ESRI's ArcGIS Pro 2.5. polygon data were converted into raster surfaces using the Distance tool^{6,7}. Data with poor coverage was interpolated us interpolation to create full coverage raster surfaces.

Suitability Analysis in ArcGIS Pro: Using the reclassify tool Pro, suitability scores were assigned to each data layer value. L then combined using weighted overlay. Layers given higher w greater influence on the final output. Weights and suitability se assigned based on results of the document analysis.

		-	weighted Overla	ay. How It works				
2	3		3	2		2		
0 (Restricted)	1	+	3	1		0		
Layer 1 * 0.75			Layer 2 * 0.25		_	Final suitability. Values rounded		

References: 1 Francisco, et al. (2019). "Public attitudes towards marine aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." Aquaculture in Canada: insights from the Pacific and Atlantic coasts." International 27(1): 9-32. ³Government of Nova Scotia. D. o. F. a. Aquaculture site suitability study using multi-criteria evaluation approach." Indian Journal of Fisheries 61: 108-112. ⁵Silva, C., et al. (2011). "Site selection for shellfish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments 318(3-4): 444-457. 6Assefa, W. W. and W. B. Abebe (2018). "GIS and farm-scale models, with an emphasis on data-poor environments 318(3-4): 444-457. 6Assefa, W. W. and W. B. Abebe (2018). "GIS and farm-scale models, with an emphasis on data-poor environments 318(3-4): 444-457. 6Assefa, W. W. and W. B. Abebe (2018). "GIS and farm-scale models, with an emphasis on data-poor environments." Site selection for shell fish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments." Site selection for shell fish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments." modeling of potentially suitable sites for aquaculture development in the Lake Tana basin, Northwest Ethiopia." Agriculture & Food Security 7(1): 72. 7Longdill, P. C., et al. (2008). "An integrated GIS approach for sustainable aquaculture management area site selection." Ocean & Coastal Management 51(8): 612-624. 8Stantec (2009). Road Map for Aquaculture Investment in Nova Scotia. Halifax. Halifax. Nova Scotia. Halifax. Nova Scotia. Halifax. Nova Scotia. Halifax. Nova Scotia. Halifax. H

Decision Support Tools to Support Aquaculture Development in Nova Scotia With case studies in Liverpool Bay and Main-a-dieu Nicole Torrie

Supervised by Dr. Jon Grant, Department of Oceanography

Research Objectives

The purpose of this research was to encourage and inform sustainable growth of the Nova Scotian aquaculture industry by exploring factors which contribute to determining site suitability, with case studies in Liverpool Bay and Main-a-dieu Nova Scotia. The following objectives were considered:

Analysis of literature to create a complete list of criteria and constraints to consider for site selection of aquaculture sites in Nova Scotia

Ø

Creation of a geodatabase with data layers relevant to aquaculture site selection in Nova Scotia

Production of detailed suitability analysis map outputs for shellfish aquaculture in Liverpool Bay and Main-a-dieu Nova Scotia

aquaculture	Criteria Name	
ing relevant		
haps based	Physical: Biophysical Conditions & Infrastructure	
	Wave Amplitude	
	Wave Period	
rature was	Water Depth	
ojectives to	Temperature	
he world to	Seasonal Weather Patterns	
siderations.	Dissolved Oxygen (DO)	
a suitability	Suspended Solids	
9	Water Exchange Rate (flushing)	
	Phylotoxins	
	Disease Organisms	
	Potential for Fouling	
document	Presence of Food Supply (plankton)	
	Potential of Predators	
ere sourced	Presence of Invasive Species	
nada Open	Presence of Naturally-Occurring Populations	
nd Oceans	Carrying Capacity of Receiving Waters	
heries and	Heavy Metal Pollution	
ine Applied	Bacterial Contamination (E Coli levels)	
CSV files.	Site Access	
	- Roads and wharves	
	- Waste disposal	
	- Generational services (fuel, food, etc.)	
alvsis data	- Processing facilities	
shanefiles	Availability of Seed Stock/Juveniles	
Point and	Social: Other Resource Users	
	Proximity to Existing Aquaculture Sites	
	Proximity to Fishing Grounds	
sing spline	Proximity to Navigational Routes	
	Proximity to Other Industry	
	Proximity to Agriculture	
	Proximity to Point Sources of Sewage Effluents	
	Proximity to Tourism Operators	
in ArcGIS	Proximity to Recreational Users	
ayers were	Proximity to Residential Areas	
eights had	Ecological: Ecologically Sensitive Areas	
cores were	Proximity to Protected Areas	
	Proximity to Informally Recognized Areas	
	Proximity to Species at Risk	
	Proximity to Important Fish Habitat	

Waighted Overlay: How it works

Towards completion of a BSc Combined Honours in Environment, Society & Sustainability (ESS) and Environmental Science, Dalhousie University

Results

Identified datasets: 96 total

- Physical: 23 data layers
- Social: 27 data layers
- Ecological: 29 data layers
- Other: 17 data layers

Included datasets

- Liverpool analysis: 11
- Main-a-dieu analysis: 8

28ND V

20m

Identified		
1	1	
	1	
2	1	
2	1	
3	1	
1	1	
	1	
2	1	
—	-	
	-	
	-	
4	-	
1	-	
4	-	
1	-	
	-	
	-	
	-	
1	-	
	-	
7	-	
	-	
2	-	
	-	
	-	
1	1	
2	1	
16	1	
-	1	
1	1	
2	1	
1	1	
	1	
4	1	
-	1	
2	-	
<u> </u>	-	
15	1	

to nearest integer

Liverpool

22.4%

9

8

Recommendations:

- access data portals, allowing the suitability analysis process to be repeatable

Acknowledgements: I would like to acknowledge the following individuals in the support of this research. My supervisor Dr. Jon Grant, instructor Dr. Melanie Zurba, my colleagues Dr. Gregor Reid, Dr. Danielle Dempsey, Dr. Ryan Horricks, Leah Lewis-McCrea, James Cunningham, and Laila Nargis at the Centre for Marine Applied Research, and my peers in the ESS Honours 2021 cohort

Suitabilit

9

1

54.3%

Score

• Decision support tools such as suitability analysis can be very useful for analyzing suitable

• Suitability map outputs can identify where further efforts such as carrying capacity modelling,

• Inability to conduct thorough public consultation, scientific review, or consideration for local knowledge to determine optimal weighting schemes and accurately represent social and

• Data gaps should be addressed with emphasis on importance of sharing data publicly to open-• Data collected throughout this process should be used as inputs to carrying capacity modelling and other decision support tools to further understand the impacts of aquaculture development